Stale TLS Certificates Investigating Precarious Third-Party Access to Valid TLS Keys

Zane Ma (he/him) **Oregon State University** 2023.10.25

Aaron Faulkenberry, Thomas Papastergiou, Zakir Durumeric*, Michael Bailey, Angelos Keromytis, Fabian Monrose, Manos Antonakakis

Georgia Institute of Technology *Stanford University

Public-key crypto

Subject Name: domain.com

Key challenge: linking cryptographic identity (public-key) with semantic identity

TLS Certificate

Stale TLS Certificates
Zane Ma

TLS certificate = cached attestation

Issuer Name: Certificate Authority XYZ

Subject Name: domain.com Subject Public Key: 0400aefa6edef14a...

Validity: 2023-10-20 to 2024-11-19

Issuer Signature: 19574503953e.

Stale TLS Certificates • Zane Ma

TLS Certificate

Stale TLS certificates

Issuer Name: Certificate Authority XYZ

Subject Name: domain.com Subject Public Key: 0400aefa6edef14a...

Validity: 2023-10-20 to 2024-11-19

Issuer Signature: 19574503953e...

Stale TLS Certificate

Stale certificates arise from certificate invalidation events: changes to attested information (e.g., subject / issuer info) while certificate is still valid

New TLS Certificate

Stale TLS Certificates
Zane Ma

Stale TLS certificates

Issuer Name: Certificate Authority XYZ

Subject Name: domain.com Subject Public Key: 0400aefa6edef14a...

Validity: 2023-10-20 to 2024-11-19

Issuer Signature: 19574503953e...

Stale TLS Certificate

Domain-to-key operational gap

Stale TLS Certificates • Zane Ma

Third-party access to valid TLS keys

Compromised key change

Domain owner change

Stale TLS Certificates • Zane Ma

Managed TLS change

Revocation to the rescue?

Web browsers

Chrome has CRLsets primarily for "emergency situations"

Firefox OCSP checking fails open OCSP Must-Staple fails closed, but low adoption

No revocation checking for most leaf certificate revocation

openSSL, curl, API libraries, email servers, messaging clients

OkHttp

Minimal-to-no revocation checking

Stale TLS Certificates • Zane Ma

Non-browser TLS clients

Revocation is sparse and unreliable

Internet-wide staleness 5B TLS certificates 4B WHOIS records **Third-party** # certs / day **Staleness** Key compromise 493

Domain owner change 2,593

Cloudflare managed TLS change

9,495

Stale TLS Certificates • Zane Ma

ay	#e2LD / da	# FQDNs / day
	347	787
Detected s certs for c	1,214	2,807
	7,722	18,833

What can we do about it?

- Revocation is largely ineffective, and (unsurprisingly) poorly utilized
- Caching problem: reduce certificate lifetimes

Shortening certificate lifetimes

Stale TLS Certificates
Zane Ma

90-day limit = 75% decrease in time of third-party access to valid TLS keys

Conclusion

- TLS certificates are a caching mechanism to bind domain-to-key
- Stale TLS certificates —> third-party access to valid TLS keys for someone else's domain, enabling interception attacks
- This has affected at least 4 million domains since 2013
- Revocation (cache invalidation) is ineffective; reducing certificate lifetimes (cache duration) is a promising direction
- Alternative solutions: placing keys closer to names and reducing the domain-to-key operational gap

Stale TLS Certificates Investigating Precarious Third-Party Access to Valid TLS Keys

Zane Ma (he/him) **Oregon State University** 2023.10.25

Aaron Faulkenberry, Thomas Papastergiou, Zakir Durumeric*, Michael Bailey, Angelos Keromytis, Fabian Monrose, Manos Antonakakis

Georgia Institute of Technology *Stanford University

