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Abstract—Network operators require comprehensive and com-
prehensible network monitoring to manage resources, mea-
sure performance, ensure compliance, conduct audits, and de-
tect/mitigate security threats. DNS labeling is one of the most
useful techniques for tracking network activity, enabling oper-
ators to understand the web services that hosts communicate
with. However, DNS-based monitoring has a blind spot: traffic
to IPs with no associated DNS records, which we call orphan
flows/IPs. Orphan flows can often indicate peer-to-peer or VPN
communication, as well as bootstrap network services (e.g., root
DNS / NTP servers), or software that is attempting to circumvent
domain blocklisting systems.

This work presents the first large-scale analysis of orphan
flows to understand 1) the practical hurdles to measuring orphan
flows, and 2) the potential utility of orphan flow identification
for network operators and security analysts. Our seven-month
study examines traffic from a large U.S. university with over 3.3
billion flows per day. We construct a robust multi-stage traffic
analysis pipeline that accounts for practical challenges (e.g., data
loss, clock skew) in order to hone in on true orphan flows. In
total, we find communication to 26K orphan IPs, 63% of which
we can categorize into behavior ranging from Windows update
servers to malware-related traffic. Notably, we suspect 2.5% of
the orphan IPs to be potentially malicious, but they do not appear
in known threat intelligence sources. Ultimately, we shed light on
a blind spot for network operators and highlight new monitoring
opportunities.

I. INTRODUCTION

Network visibility is essential for network administrators.
Without comprehensive awareness of devices, applications,
and data flows, network operators cannot reliably perform
resource and performance management, compliance and au-
diting, security monitoring, and threat detection. One common
method for gaining network visibility is Domain Name Sys-
tem (DNS) monitoring. Since DNS is a ubiquitous protocol
for mapping semantic domain names to IP addresses, most
internet communications begin with a DNS lookup, making it
a key element for monitoring network activity [1–3]. Further-
more, DNS monitoring can be combined with network flow
monitoring—a popular traffic aggregation technique—to yield
detailed, context-rich visibility into a wide range of network
traffic [4, 5].

In an ideal network where every network flow corresponds
to an IP with a DNS record, DNS-flow techniques would pro-
vide complete visibility into the named infrastructure accessed
by a network. However, in less ideal real-world networks, the
presence of flows that lack an associated DNS record creates

visibility gaps. In this study, we refer to such network flows
without an associated DNS record as orphan flows. These
flows may originate from legitimate applications, anonymiza-
tion services such as VPNs and TOR, or malicious actors
intentionally eschewing DNS [6, 7] due to DNS’s prominence
as an upstream choke-point for security controls. Since they
are unobservable to network operators relying on DNS-based
monitoring systems, it creates blind spots in network visibility,
potentially allowing security events and malicious traffic to go
unnoticed.

This work is the first to characterize the nature and preva-
lence of orphan flows in an enterprise network. Identifying and
analyzing these flows is essential for understanding network
operator visibility, evaluating the effectiveness of existing se-
curity controls, and determining whether additional monitoring
strategies are necessary. Despite the conceptual simplicity
of labeling flows based on their DNS lookup, operational
obstacles associated with large-scale data collection, such as
data loss, high noise levels, and the difficulty of orienting
flows makes detection of orphan flows challenging at scale.
To address this, we developed a multi-stage data processing
pipeline taking into account these challenges which merges
unidirectional flows into bidirectional flows and orients them
in the correct direction before labeling flows as orphan or non-
orphan using multiple DNS datasets. Our contributions in this
work are as follows:

• We developed a pipeline for identifying orphan flows at
scale, taking into account real-world considerations such
as noisy data and applied it to seven months (over 3.32
billion flows per day) of data collected at a large US
university with more than 50K members.

• We identified 10,651,552 orphan flows to 26,385 IPs over
the measurement period. While over half of the orphan
flows are due to explainable behavior (53.5%) such as
peer-to-peer connections and VPNs, orphan traffic also
consists of malicious traffic (7.27%), and even poten-
tially malicious traffic (2.53%) not listed in any known
blocklists or flagged by antivirus solutions, suggesting an
overlooked security risk.

• We studied the persistence and malware associations of
orphan flows, identifying the presence of threats that
evade traditional DNS-based monitoring systems in the
network.

Ultimately, we present the first large-scale measurement ofU.S. Government work not protected by U.S. copyright



orphan flows, shedding light on their characteristics, behavior,
and security risks. We hope our findings can inform network
operators and motivate future research into improving network
traffic explainability.

II. BACKGROUND AND RELATED WORK

A. NetFlow

NetFlow, introduced by Cisco, is the de facto standard
for summarizing network communication between IPs. A
flow represents a unidirectional sequence of packets that
typically share the same source/destination IP addresses,
source/destination port numbers, and IP protocol field. Net-
Flow monitoring will track aggregate metrics for each unique
flow, such as the volume of data transferred, as well as the time
and duration of the flow. While NetFlow has many applications
[8, 9], its unidirectional nature limits its utility in certain
use cases [10–12]. For instance, bidirectional communication
between a client and server is represented as two separate
flows, making it difficult to identify clients and servers without
additional processing. Prior work has developed techniques to
merge unidirectional flows into bidirectional flows [11, 12].
However, these methods do not effectively address the issue
of inferring the overall direction of merged flows in a scalable
manner, particularly in the presence of practical concerns,
such as data loss. Additionally, in applications that correlate
NetFlow and DNS data, if the focus is on flows that have
corresponding DNS records, then the unidirectional nature
of NetFlow is not problematic. This is because correlation
attempts can be made regardless of whether the remote address
is the source or destination, and flows lacking a corresponding
DNS resolution are ignored. However, our objective is to
identify orphan flows in a large enterprise network that hosts
both clients and servers, which receive inbound requests,
necessitating the exclusion of inbound flows as the concept
of orphan flows do not apply to them. This requires merging
unidirectional flows into bidirectional flows and determining
the flow originator. No prior work has developed a robust
and scalable technique for merging unidirectional flows into
bidirectional flows and orienting them in the presence of
practical challenges associated with large-scale network data.

B. Orphan Flows

Orphan flows are outbound network flows directed to IPs
that lack an associated DNS record. Understanding orphan
flows is important because they often go unmonitored, as most
network monitoring systems depend on DNS for visibility. In
modern enterprise networks that adhere to the principle of
“default deny,” where only essential interactions are permitted,
blocking these unmonitored flows by default may disrupt
critical services. Moreover, since many security mechanisms
rely on DNS, orphan flows bypass these defenses. So at
best, they represent unmonitored communication with benign
services; at worst, they may indicate stealthy malware directly
using IP addresses to evade DNS-based detection. Whyte et.
al. [13] first introduced the concept of orphan flows in 2004,
and identified orphan flows in a network with 63 devices

that are indicative of worm propagation. Our study differs
since it examines orphan flows in a modern enterprise network
experiencing much larger traffic volume, significantly higher
noise levels, and diverse malware threats, rendering prior
techniques ineffective.

Orphan flows are relevant only to outbound traffic because
inbound flows originate from external devices connecting to
internal services, where the external IP represents a user and is
not expected to have a DNS record. Hence we do not consider
these flows. In the case of outbound flows, orphan flows are
caused by applications communicating directly with IPs. These
communications may stem from legitimate operations, such as
routing protocols, network management traffic (e.g., SNMP,
ICMP), and service discovery mechanisms (e.g., NetBIOS,
LLMNR, UPnP), all of which can be easily identified by
network operators based on their unique protocol character-
istics. Since these flows are expected and do not obscure
visibility into external traffic, they are also excluded from
our analysis. Another significant portion of IP-only traffic
expected in every network is traditional DNS traffic, one of the
most widely used internet services. In our data, approximately
27% of flows were identified as UDP port 53 DNS traffic,
consistent with prior research [14]. As these are unencrypted
UDP traffic with port 53 as a unique defining characteristic,
it is easy for network operators to identify and analyze.
Moreover, operators maintain full control over their DNS
servers, ensuring visibility into most DNS-related traffic in
the network. Hence, these flows are also excluded from our
analysis.

Other sources of orphan flows include peer-to-peer and
anonymization services like VPNs and TOR. While not inher-
ently malicious, these are undesirable in enterprise networks,
as they may indicate users attempting to evade security con-
trols and monitoring. Prior works have also found malware
(e.g., RATS/trojans [6, 7], adware [15], worms [16]) that
utilizes hard-coded IPs for command and control (C2) commu-
nications, while some malware like Mirai calculates random
IP addresses [17]. As a rough estimate, we queried VirusTotal
for 10K random malware samples from MalwareBazaar [18]
and found that 20.3% of the 5.8K samples with IP com-
munication did not perform any detectable DNS resolution.
These malware-generated orphan flows will go unnoticed by
network operators that rely on DNS-based monitoring systems.
Such uncommon and hard-to-characterize orphan flows create
monitoring blind spots while also evading DNS-based security
controls.

C. Correlating NetFlow and DNS Data

While previous studies have demonstrated how network
traffic data and DNS data can be correlated for various
applications [4, 5, 12, 19–21], correlating DNS and flow data
to discover orphan flows presents unique challenges. Whereas
DNS-labeled (i.e., non-orphan) flows are easy to identify with
high confidence, residual orphan flows are relatively noisy
since there are many causes/categories of orphan flows mixed
together. For example, a pseudo-cause of orphan flow in a
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Fig. 1: An abstract representation of an enterprise network with
multiple NetFlow (green) and DNS sensors (blue). Large-scale data
collection often has issues like data duplication, clock skew, and data
loss.

network is missing DNS data. This issue arises when the
DNS record for an IP is missing in the DNS dataset, either
due to a loss in data collection or if the user in the network
uses encrypted DNS. In this study, we used multiple DNS
datasets to identify absolute orphan flows and reduce cases of
mislabeled orphan flows.

III. DATASETS

To identify orphan flows, we leverage real-world NetFlow
data and various DNS datasets to filter out non-orphan flows.

NetFlow Data We collected NetFlow data from a large
US university with over 50K members. Sensors to gather
NetFlows are located at various points within the university
network, as shown in Figure 1. The data was collected from
November 1, 2022 to May 31, 2023. Figure 2 shows the vol-
ume of NetFlow data we collected. Due to logistical difficulties
in collecting and maintaining data at this scale, there are gaps
in the NetFlow data in some of the months, which are not
uncommon for large-scale network sensor deployments. Out
of the 212-day (7-month) time span, we were unable to use the
data from 42 days due to data collection issues. On average,
our dataset consists of approximately 3.32 billion NetFlow
records per day.

DNS Datasets In our implementation, the two main DNS
datasets used are a passive DNS dataset collected from the
university network and the Active DNS dataset [22]. The pas-
sive DNS data is collected from the university network using
sensors placed at points above the recursive servers spread
across the network as shown in Figure 1. The ActiveDNS
dataset [22] is a comprehensive collection of DNS records
gathered through daily active probing of the DNS namespace.
On average, the passive and Active DNS datasets had 235
million and 356 million valid A records per day respectively.

A. Real-world data challenges

One of the key challenges in large-scale data collection is
data loss [23–25]. When data is incomplete, we are unable

to rely on timestamps for determining the overall direction of
a merged flow, which is necessary for filtering out inbound
flows. To quantify the extent of data loss within our datasets,
we conducted a control experiment by generating known
traffic. This experiment allows us to compare the data recorded
by the NetFlow sensors with ground truth traffic collected at
the source device. We sent out 10 HTTP requests to download
data in various sizes from a known external server, repeating
this process 125 times at varying intervals throughout the day.
We carried out this experiment on four devices with globally
routable IP addresses and four devices with private (NAT) IP
addresses for three consecutive days.

Comparing the NetFlow data with the baseline traffic cap-
tured at the source, we observed 62.42% packet loss in the
outbound traffic and an almost complete loss of inbound
traffic. However, since we use NetFlow instead of individual
packets, we can mitigate the potential impact of high packet
loss. Since NetFlow aggregates many packets into a single
flow, if at least one packet in a connection is captured, a
flow will be created for it, which is sufficient for our aim
of finding orphan flows. To interpret this packet loss in terms
of the number of flows captured, we performed a simulation
relating the number of packets per flow to the percentage
of flows captured for a given percentage of packet loss. As
shown in Figure 3, at 62.42% packet loss and an average of
8.37 packets per flow as observed from our data, we will be
capturing 97.70% of flows, albeit often with incorrect values
in the number of packets and number of bytes. This loss
in data is not due to sampling at the NetFlow monitors, as
no systematic sampling was in place. Rather, the loss is due
to logistical challenges in data collection and is random and
uncharacterizable across time and IP space.

IV. IDENTIFYING ORPHAN FLOWS

The goal of our analysis is to identify and evaluate orphan
flows that hinder network visibility and may indicate DNS-
evasive behavior, particularly those that are unexpected, less
apparent, or difficult to characterize based on protocol prop-
erties. To identify such orphan flows, we first identify and
exclude all expected and apparent cases of orphan flows from
the network data (e.g., ICMP, DNS, etc.). We then correlate
the remaining flows with passive DNS data collected within
the network and the ActiveDNS data to label flows as orphan
or non-orphan. This process is neither a detection system nor
a classifier; rather, it is a framework for addressing a big
data challenge by isolating orphan flows that impact network
visibility. Furthermore, as the first study to investigate orphan
flows, we took the most conservative approach in each step
to be robust against practical challenges associated with large-
scale network data to ensure a clean set of orphan flows.

Our process has two main parts: NetFlow processing and
NetFlow labeling, as shown in Figure 4. The NetFlow process-
ing step takes the raw NetFlow data and first removes noise
(expected cases of orphan flows detailed in Section II-B). It
then merges unidirectional flows into bidirectional flows and
orients them in the correct direction. Finally, it removes all the
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Fig. 3: Results of our statistics-based simulation showing the number
of flows that would be recorded/unrecorded (i.e., no. packet picked
up by a NetFlow sensor) for three levels of packet loss as a function
of flow size. Intuitively, flows with more packets are more likely to
be recorded.

inbound flows, as the concept of orphan flows does not apply
to them. Finally, in the NetFlow labeling step, we label and
remove non-orphan flows using the DNS data from various
sources. In the following subsections, we will describe each
step in more detail.

A. NetFlow Processing

We implemented a 4-step process to clean the NetFlow data.
The steps are: Pre-Merging filter, which removes noise and
some expected cases of orphan flows, NetFlow merging and
Netflow orienting, which is required to convert unidirectional
flows to bidirectional flows, and final filter, as shown in Figure
4.

Pre-Merging filter In this step, we remove noise in our
data due to misconfiguration and other expected and well-
known cases of orphan traffic. This filter removes all ICMP
flows, broadcast and multicast flows, port 53 DNS flows, flows
to bogon IPs, organization-internal traffic, and private-address
IP flows. For simplicity, we decided to limit the scope of our
analysis to only IPv4 traffic and removed all IPv6 flows, which
constituted 1% of the total traffic. In total, this filter removes
98.76% of our 3.32 billion average daily flows.

NetFlow Merging Since the concept of orphan flows does
not apply to inbound flows, they need to be filtered out. Since
flows are unidirectional, this creates a problem because, for
a given unidirectional flow with an internal IP address as its
source IP address, it could be either a communication that

originated in our network or could be the return direction to
a communication initiated by a host outside our network. In
this scenario, we should only keep and attempt to label the
first type of flows. Conversely, in the case of a flow that has
an external IP address as the source and an internal IP address
as the destination, we should only keep and attempt to label
if this flow is the response to a flow that originated from our
network.

In theory even though the communication between two hosts
can be represented with exactly two flows (one flow for all the
packets in each direction) we found contradicting evidence in
our data where instances of traffic from a source to a destina-
tion i.e., the same {src_ip, dest_ip, src_port, dest_port, proto-
col} are logged multiple times. This could be because NetFlow
fragments connections exceeding a predefined duration into
smaller flows [12], or due to packets from the same connection
taking different routes within the network and getting logged
at multiple points, or because of NetFlow sensors at two
different levels in the network hierarchy generating duplicate
logs. To combine all the unidirectional flows that constitute
the bidirectional communication between two hosts, we use the
same five-tuple {src_ip, dest_ip, src_port, dest_port, protocol}
that NetFlow protocol uses to aggregate packets into flows.
The timestamp of the combined bidirectional flow will be the
timestamp of the flow with the lowest timestamp among all
the flows that were merged together.

NetFlow Orienting Data loss (Section III-A), along with
clock skew between NetFlow sensors, means that we cannot
use the timestamps of the constituent unidirectional flows in a
merged flow to determine its overall direction. To address this
issue, we used port numbers as the primary indicator to orient
the merged flows in the correct direction. The port numbers
are categorized into three ranges: well-known (0 - 1,023),
registered (1,024 - 32,767), and ephemeral (32,768 - 65,535).
Well-known ports are reserved for widely used processes
and applications, such as HTTP and DNS. Registered ports
are assigned by the Internet Assigned Numbers Authority to
specific services upon request. Ephemeral ports, in contrast,
are temporary and short-lived, automatically allocated by the
operating system to client applications for outgoing connec-
tions. In a typical client-server communication, the client uses
a random ephemeral port, and the server uses a well-known or
registered port. Consequently, in a flow if one port is a well-
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known or registered port and the other port is a ephemeral
port, the flow’s direction can be inferred using this heuristic.
In this case, the ephemeral port and its associated IP address
will be the source that initiated the connection to an IP address
running a service using a well-known port or a registered port
[26]. In the merging step output, 87.51% of the flows followed
this behavior and are oriented with the IP using the ephemeral
port as the client that initiated the communication and the IP
with well-known or registered port as the server.

In practice, not all flows adhere to expected port behavior.
Figure 5 illustrates the percentage distribution of flows across
the nine possible combinations of source and destination port
types as observed in our raw data. While the majority of flows
exhibit the anticipated behavior (marked in green), 17.63%
deviate from this pattern (marked in orange). These unexpected
port combinations arise due to various applications and pro-
tocols that do not follow this convention [27–29]. Different
operating systems and even different versions of the same OS
define default ephemeral port ranges inconsistently [30, 31],
which can also cause such unexpected port combinations. In
this study, we designate port 32,768 as the lower bound of
the ephemeral range, following the convention used in many
Linux kernels [32]. Taking a conservative approach to ensure
precise results, we excluded flows that had unexpected port
combinations (combinations marked in orange in Figure 5)
since we are unable to confidently determine the direction of
such flows. Thus in this step, 12.49% flows output from the
merging step are removed.

Post-Merging Filter Now that we know the overall direc-
tion of a merged bidirectional flow, the post-merging filter
removes all the inbound flows. As recent works have shown,
many organizations that conduct internet scanning employ
wide-range scanners that scan a wide range of ports across
the well-known, registered, and ephemeral port ranges [33].
As the heuristics we used in the NetFlow orienting step relied
purely on port numbers, it is possible that any scanner flows
that do not follow it will be misoriented and hence will not
be filtered out. To handle any such flows, we used a list of
known-scanner IPs published by Maltrail [34] to remove any
remaining scanner flows. The final filter removes 50.7% flows
in total.

Validation Due to the absence of ground truth data repre-
senting diverse enterprise network traffic, it is impractical to
evaluate the accuracy of the pipeline in a traditional manner,
which limited our evaluation to small-scale manual validation
efforts using known behavior and data from controlled experi-
ments. To validate the results of our NetFlow processing step,
we passed the data generated for the data loss control ex-
periment (Section III-A) through this process. The final clean
merged output contained 100% of all the flows we generated
from the test devices that were present in the raw NetFlow.
To ensure that inbound flows are removed, we specifically
examined flows associated with IP addresses from the Censys
scanning subnets [35] in both the raw and cleaned NetFlow
datasets. Analyzing the data from six randomly selected days,
the raw NetFlow data contained an average of 1.814 million
flows per day from Censys scanning IPs. In contrast, the final
cleaned and merged dataset, spanning seven months, contained
only 17 flows in total from these IPs.

B. NetFlow Labeling

To identify orphan flows by eliminating flows that have a
corresponding DNS resolution in any of the DNS datasets, we
first created a DNS cache using the Type A responses from the
passive DNS data collected from the same network as well as
the Active DNS dataset. Then, for each flow, we check if the
destination IP is present in the DNS cache. If the IP is present
in the cache, the flow is considered non-orphan, and we discard
it. In this manner, we labeled seven months of NetFlow data
at a large (50k+ members) US university and found that an
average of 1.57% of outbound bidirectional flows per day were



orphan. At this stage, we found 64,061 unique orphan IPs, i.e.,
the destination IPs corresponding with the orphan flows.

Manual Filtering As mentioned before, due to the preva-
lence of wide-range scanners, it is possible that there are
false orphan IPs in the orphan IPs we found in the previous
steps. To further address this issue, we obtained the ASN and
ISP information of the 64,061 orphan IPs using Cymru and
AbuseIPDB APIs. Using this information we identified IPs
belonging to Censys, Palo Alto, and Alphastrike Research,
which are organizations that conduct large-scale internet scans
[33]. After observing the NetFlow patterns of these IPs, we
filtered out 123 IPs as scanners.

Finally, to avoid any erroneous labeling due to gaps in
the passive DNS and ActiveDNS datasets, we queried the
remaining orphan IPs on VirusTotal for any known DNS
resolution associated with them. Orphan IPs that had a known
DNS resolution on VirusTotal are also filtered out. We did
not use VirusTotal as a third DNS dataset in the previous
NetFlow labeling step because, unlike passive and active DNS
data, the VirusTotal dataset is accessed via an API with quota
limits, making it unscalable. After removing these false orphan
IPs, we have 26,385 absolute orphan IPs from our 7-month
experiment.

V. CHARACTERIZING ORPHAN IPS

In this section, we characterize the nature and potential
security relevance of the 26,385 orphan IPs from our seven-
month experiment. We first examined the behavior of the
orphan flows associated with these IPs by analyzing their
source and destination port distributions, as well as the fre-
quency and density of the flows. We also collected information
from external sources like IP Registry [36], VirusTotal [37],
AbuseIPDB [38], Maxmind [39], and IP blocklists [40]. Using
this information, we were able to group orphan IPs into four
groups: explainable (53.47%), malicious (7.27%), potentially
malicious (2.53%), and orphan IPs with indeterminate orphan
behavior (36.73%). The following subsections describe each
of these categories in more detail.

A. Explainable Orphan IPs

Out of the 26K orphan IPs we identified, we classified
14,190 (53.47%) IPs as explainable. Our strategy to try to
explain the behavior of orphan IPs was to first use the infor-
mation provided by IP intelligence services like IP Registry
[36] and MaxMind [39]. For IPs not explained through these
sources, we analyzed the most popular source and destination
ports in the orphan flows associated with these IPs. For ports
linked to unique protocols, we examined traffic patterns and
used available information, such as the ASN, to confirm
whether the observed behavior aligned with the expected
behavior of the protocols associated with those ports. Table I
shows the various categories of explainable orphan IPs. Using
data from IP Registry and MaxMind, we identified 415 IPs
associated with VPNs, 56 with proxies, and two as TOR
exit nodes. This constitutes the first category of explainable

Explanation Category # Orphan IPs

From IP
Intelligence

Datasets

VPN 415
Proxy 56
TOR 2

Based on Port
number, flow
behavior and

IP info

Windows Update 7252
Microsoft Teams 2365
BitTorrent Peer 633

NTP Time Server 632
BitTorrent Tracker 99

FaceTime & iMessages 77
Blizzard Games 13

Misoriented
Flows

Port 52869 Satori scan 1456
Port 50000 scan from Korean IPs 947

Amazon AWS IP scan from port 21345 162

TABLE I: Different categories of explainable orphan IP behavior.

orphan IPs, inferred directly from the data provided by these
IP intelligence services.

For the remaining IPs, we investigated outliers in the distri-
bution of the popular ports and looked for ports that we could
attribute to specific uses. For example, one outlier was port
7680, a registered port used by Microsoft Windows Update
Delivery Optimization for peer-to-peer connections [41]. We
identified 7,252 orphan IPs with traffic on this port. Based
on ISP information, these IPs belonged to telecom providers
like Comcast, AT&T, T-Mobile, etc., suggesting they were
update optimization-enabled Windows devices from home
users. These devices formed peer-to-peer connections within
our network for transferring Windows updates. Since such
devices typically lack associated DNS records, we observed
them as orphan IPs.

We found 2,365 Microsoft delegated orphan IPs that had
traffic on ports 3478-3481. These ports are used by Microsoft
Teams for Session Traversal Utilities for Network Address
Translators, audio, video, and screen sharing, respectively [42].
We hypothesize that these IPs appear as orphans because, in
certain cases, Microsoft might be using hard-coded IPs in-
stead of domain names for performance reasons like reducing
latency or fault tolerance. Similarly, we found 77 orphan IPs
belonging to Apple with traffic on ports ranging from 3478
to 3497, which Apple uses for FaceTime and iMessage [43].
Port 3724 is used by many games, especially Blizzard games,
for various aspects of gameplay like updates, downloads and
in-game communication [44]. In our data, we found 13 orphan
IPs from Blizzard with traffic on port 3724.

We observed that 633 orphan IPs exclusively used ports
in the range 6881–6889, the registered range for BitTorrent
traffic, while 99 orphan IPs used only port 6969, the registered
port for BitTorrent trackers [45]. These IPs were attributed to
BitTorrent and BitTorrent trackers, as the peer-to-peer nature
of BitTorrent inherently results in IPs lacking DNS resolution,
leading to orphan flows. Another notable case involved port
123, which is used by Network Time Protocol (NTP) servers
for time synchronization [46]. We identified 632 orphan IPs
with UDP traffic solely on port 123, suggesting they were time
servers. While time servers can have hostnames, they often
lack DNS records because their IPs are directly provided via
DHCP or manually configured (e.g., in /etc/ntp.conf on Linux
systems), leading to their appearance as orphan IPs.



Several orphan IP flows appeared to exhibit likely scan-
ning behavior. For example, 162 orphan IPs from Amazon
AWS showed traffic originating from port 21345, a port
not associated with any known service, targeting a range of
ephemeral ports. Examining the popular source ports of orphan
flows, 1,456 orphan IPs used port 52869, associated with
the Satori botnet, a Mirai variant that exploits a command
injection vulnerability in Realtek SDK’s Universal Plug and
Play (UPnP) SOAP interface [47]. Over 94% of these IPs
exclusively used port 52869 as their source port, with flows
directed to various internal IP addresses. Similarly, all flows
from 947 orphan IPs belonging to KIXS-AS-KR, a Korean
Telecom ASN, exclusively used port 50,000 as their source
port. In all three cases, reports on AbuseIPDB described
scanning behavior matching the observed source destination
port patterns during our measurement period. These three
sets of orphan IPs: Amazon AWS IPs scanning from port
21345, IPs scanning port 52869, and Korean IPs scanning port
50000 are likely misoriented inbound flows resulting in false
orphan IPs. Based on flow patterns and corroborating data
from external sources, it is improbable that internal IPs in our
network initiated communication with these IPs. Instead, these
unsolicited inbound scanning flows, which use well-known or
registered source ports to target ephemeral ports, are likely
false positives in our dataset.

Takeaways: Explainable orphan IPs are primarily
anonymizers like VPNs and proxies, or peer-to-peer
communications. In tightly controlled networks, it is desirable
to detect and disable these types of communications which can
circumvent installed network protections. However, caution
is required, as legitimate services like video conferencing
and time servers also generate orphan flows. Additionally,
despite efforts to filter out scanner flows, the prevalence of
false positives, all identified as scanners, underscores the
ongoing challenge of automatically and reliably distinguishing
scanners in real-world network traffic at scale.

B. Malicious Orphan IPs

Based on prior works [6, 7, 15, 16] that highlight the preva-
lence of IP-only communication in malware, we hypothesized
that orphan flows can indicate malicious traffic trying to evade
DNS-based detection methods. To find malicious IPs among
the orphan traffic, we used two ground-truth datasets: the
BLAG dataset [40] and malicious reports by security vendors
on VirusTotal (VT). Figure 6 shows a Venn diagram indicating
the number of malicious orphan IPs found. As the figure
shows, 1,899 orphan IPs were in BLAG, and 130 orphan
IPs had more than five malicious reports on VirusTotal. Of
these, 112 IPs were common to both categories. Therefore, we
classified a total of 1,917 orphan IPs (7.27%) as malicious.

Malicious Reports on VirusTotal VirusTotal is an online
service that aggregates reports from various anti-virus (AV)
engines and other security tools to provide a comprehensive
assessment of potential threats associated with the different
indicators of compromise (e.g., IP, URL, file hash). We queried
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Fig. 6: Venn diagram of malicious and potentially malicious orphan
IPs found using VirusTotal, BLAG, and malicious communicating
files.
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Fig. 7: Orphan IP distribution in our data by malicious category, and
relative to the time of their first appearance on blocklists.

the 26,385 orphan IPs on VirusTotal. To take a conservative
approach, we only labeled IPs that were flagged by at least
five AV vendors, finding 130 malicious IPs. To augment the
limited context of AV reports, we also enriched our data with
1) IP blocklists and 2) VT queries for malicious files that
communicate with orphan IPs. These two methods provided
more context for 114 out of 130 IPs found in VirusTotal AV
reports and labeled an additional 2,455 orphan IPs, which we
expand upon in the remaining parts of this section.

BLAG Blocklist Aggregator (BLAG) combines 157 pub-
licly available IP blocklists [40] on a daily basis. Using data
from the last six years from January 2019 to October 2024, we
found that 1,899 orphan IPs were present in the BLAG dataset.
To identify if orphan IPs are a timely indicator of malice, for
each of these IPs, we calculated the days between the first
orphan detection and the first day the IP appeared in BLAG.
Out of the 1,899 IPs, 14.1% only appeared in the blocklist
after they were first detected as orphan, 4.3% appeared in the
blocklist on the same day they were first detected as orphan,
and 81.7% first appeared in the blocklist before they were
detected as orphan in our data. While a small percentage
of IPs were detected as orphan first, a significant majority
were already recognized as malicious prior to their detection



as orphan, indicating that deploying robust IP blocklists is
effective in identifying malicious orphan IPs. Furthermore, to
understand the type of malice associated with these malicious
orphan IPs, we used the information provided in [40] and
FireHOL [48] to categorize the various blocklists in BLAG
into abuse, anonymizer, attack, malware, proxy, reputation
and spam. Figure 7 shows the distribution of orphan IPs in
BLAG across various categories of blocklists. It breaks down
the number of IPs in each category that appeared in the
blocklist before, on the same day as, or after the first day
the IP appeared as an orphan in our data. Notably, a small
percentage of IPs in the top three categories were detected
as orphan before they appeared on the blocklist, whereas all
the IPs in more acute categories (e.g., malware) were listed
on the blocklist before they were detected as orphan (χ2 =
88.37, p = 7.69×10−13).

Takeaways: Blocklists provide a valuable layer of security
against malicious orphan IPs, as they are effective at identi-
fying and flagging these many types of malicious orphan IPs
before they pose a threat to the network. However, for IPs in
abuse, reputation, and attack categories, studying orphan IPs
in the network can provide an opportunity to augment existing
threat intelligence.

C. Potentially Malicious Orphan IPs

A potentially malicious IP is an IP that is not listed in
blocklists or flagged by antivirus vendors but is associated with
a malicious communicating file, unlike malicious IPs, which
are explicitly listed or flagged. An IP address’s communicating
files are files that have generated traffic to the IP during
execution. We queried VirusTotal to obtain the communicating
files of the 26,385 orphan IPs, which yielded 16,924 unique
file hashes. We further queried these files on VirusTotal to
identify if they were malicious. Again taking a conservative
approach, we classified files as malicious only if at least
five antivirus (AV) vendors flagged them as malware. Using
this criterion, we selected orphan IPs that had at least one
malicious communicating file. Figure 6 shows that 804 orphan
IPs were associated with at least one malicious communicating
file (malware). Among the 804 IPs, 136 appeared in BLAG or
were flagged by at least five AV vendors or both, indicating a
stronger signal of malice. The remaining 668 IPs are catego-
rized as potentially malicious orphan IPs. This classification
stems from the fact that the presence of malware generating
traffic to an IP is not definitive proof of the IP’s maliciousness.
For example, the IP could belong to a command-and-control
(C2) server the malware is attempting to contact, or it could
be a randomly generated IP used by the malware to check
for connectivity. To conclusively identify these behaviors, it is
necessary to execute the malware in a sandbox environment
and analyze the resulting traffic. This we leave for future work.

Types and Families of Malware Using Orphan Flows
Although the presence of a malicious communicating file
alone is insufficient to confidently label an orphan IP as
malicious, reports on these files provide insights into the

types and families of malware that demonstrate some form of
DNS evasion. We used VirusTotal to acquire malware labels
from AV vendors and followed the methodology detailed by
Faulkenberry et al. [49] to identify the specific malware type
and family of each reported file.

Most orphan IPs were associated with grayware, viruses,
and backdoors. Grayware can have a range of undesirable be-
haviors, from displaying intrusive ads to tracking user activity.
We hypothesize that the grayware we detected may be using
orphan IPs to remain undetected to ensure their continued
operation. Viruses are malware that replicate and spread by
attaching to host files or programs. For connectivity check or
propagation it could be sending traffic directly to IP ranges,
potentially creating orphan flows. Backdoors that provide
attackers with unauthorized access are often associated with
persistent threats, indicating adversaries seeking to establish
stealthy and ongoing access to the target system [50, 51]. As
such, it is in their best interest to bypass DNS-based security
controls to avoid any operational disruptions.

The top 3 malware families associated with orphan IPs are
cerbu, a trojan family [52], pioneer, a virus linked to the
advanced persistent threat called DarkHotel [53], and wapomi,
a virus family with trojan-like behavior [54]. The rest of the
top 10 malware families are mirai botnet, allapele worm, open-
candy adware, wannacry ransomware, sality virus and trojan
families gobot and razy. To further substantiate the orphan
direct IP communication behavior of these malware families,
we queried VirusTotal to get the contacted domains of all
the malware from the top 10 families we identified. Domains
listed in the Tranco Top-1M [55] were excluded, as some
malware are known to ping popular domains to verify Internet
connectivity [56]. For five of the top 10 families—Cerbu,
Pioneer, Allaple, Opencandy, and Gobot—over 90% of their
samples did not contact any domains, aligning with their
reported reliance on direct IP communication (Section II-B),
which demonstrates and confirms the DNS-evasive behavior
of certain malware.

Takeaways: We found 668 orphan IPs that are associated
with malware execution, which corroborates DNS evasion
by malware, even if the traffic and orphan infrastructure
themselves are not malicious. As these IPs are not listed in
blocklists nor flagged by security vendors, they could either
be false negatives that should be added to blocklists, or they
are benign fingerprints that can help aid in malware detection.
These potentially malicious orphan flows are present in a wide
range of malware types and families.

D. Orphan IPs with Indeterminate Orphan Behavior

We are unable to determine the orphan behavior of the
remaining 9691 IPs (36.73%) as we were unable to attribute
and validate their orphan behavior to specific causes based on
IP intelligence sources, port numbers or any other observed
characteristics. Table II shows the top 10 most popular desti-
nation ports for flows of these orphan IPs. Based on data from
IP Registry, 56.86% of these IPs are owned by Internet Service
Providers (ISPs), 38.42% are hosting provider IPs, 2.97%



Port # Protocols
and services

# Orphan
IPs Port # Protocols

and services
# Orphan

IPs

443 HTTPS 2882 15000 Used by some games, Kaspersky 47
80 HTTP 1236 22 secure shell, file transfer 31

3724 Used by various games 91 25 Simple Mail Transfer Protocol 26

8090 HTTP alternate port 76 1024 IANA Reserved port,
KDE Display manager 26

8080 HTTP alternate port 68 8999 Brodos Crypto Trade Protocol 20

TABLE II: Top destination ports for Orphan IP flows with indeter-
minate behavior.
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Fig. 8: Orphan IP Persistence. The percentage on the bottom of
the bar indicates the percentage of explainable orphan IPs, and the
percentage on top of the bar indicates the percentage of malicious
orphan IPs in that week.

belong to educational institutions, and the remaining 1.48%
are associated with private or government organizations.

Takeaways: The inability to attribute the behavior of over
a third of orphan IPs, despite leveraging all available open-
source intelligence and manual analysis, underscores the chal-
lenges of fully demystifying orphan IPs. This difficulty reflects
the inherent noise, complexities, and “wild west” nature of
real-world network data. Resolving this issue remains an
open problem, warranting future research with alternative
approaches, such as analyzing network packets instead of
flows or measuring orphan flows at the individual device level
rather than across entire networks.

E. Orphan IP Persistence

Understanding whether different categories of orphan IPs
are short-lived or persistent will help network operators pri-
oritize their responses and refine their monitoring strategies.
Figure 8 shows a long-tailed distribution of orphan IP per-
sistence, with over 19K (72.3%) orphan IPs appearing only
during a single week in our 7-month study. Most orphan flow
infrastructure, regardless of maliciousness, is contacted for
short durations. Conversely, almost all the long-lasting orphan
IPs are explainable. As our findings reveal, most malicious
and potentially malicious orphan IPs were short-lived, with no
persistent malicious activity observed. This transient behavior
can be attributed to security systems improving over time and
quickly incorporating intelligence on malicious IPs, blocking
them before prolonged activity, and/or to attackers frequently
rotating IPs to evade detection. Moreover, the behavior of
orphan IPs can change over time; they may later be assigned
domain names, or IP churn could occur with residential IPs,
while hosting IPs may change users.

Takeaways: Most orphan flows, regardless of maliciousness,
are transient. The low persistence of malicious orphan IPs
underscores the importance of maintaining up-to-date threat
intelligence, such as IP blocklists and dynamic blocking
mechanisms, to effectively mitigate their impact. The transient
nature of potentially malicious IPs emphasizes the need for
real-time monitoring of orphan IPs for timely detection and
response, as they are not flagged by existing IP blocklists and
antivirus systems.

VI. LIMITATIONS

Due to high noise, data loss, and our conservative approach,
orphan IP counts in some categories may be underestimated,
but they serve as a robust lower bound. A significant challenge
posed by data loss was determining the overall direction of
merged flows, which forced us to rely on port-based heuristics.
The limitations of this approach became especially apparent
when we encountered scanners. Even though we used a static
list of scanners and additional manual analysis to filter out
wide-range scanner flows that do not conform to the port-
based heuristics, as our results indicate, certain scanning
IPs bypass these checks and are erroneously identified as
orphan IPs (Sections V-A). Since we lacked direct access
to the machines generating orphan traffic, we are unable to
conclusively determine the orphan behavior across all orphan
IPs. Instead, we had to infer orphan behavior using available
information such as flow patterns, port numbers, and IP and
threat intelligence datasets.

VII. CONCLUSION

Orphan flows create blind spots in network visibility since
they are unobservable to operators using DNS-based monitor-
ing systems. The inherent complexities of large-scale network
data collection, such as data loss and clock skew, coupled
with the unidirectional nature of NetFlows, make the iden-
tification of orphan IPs at scale challenging. We present the
first large-scale study into the prevalence and implications of
orphan flows by developing a data loss-resistant measurement
pipeline using seven months of network flows from a large
US university network. Our analysis reveals that most orphan
flows can be attributed to explainable, and often overlooked
traffic behaviors. Furthermore, a smaller set of orphan flows
are associated with various malicious behaviors, highlighting
security risks. While the decision depends on an organization’s
risk tolerance and cost-benefit considerations, incorporating
orphan IP monitoring would not only enhance security but also
assist in identifying benign orphan traffic, enabling operators
to adjust controls and maintain operational integrity.
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APPENDIX

Ethical Concerns: This work does not raise any ethical
issues. It was determined that the analysis we conducted did
not require a human subject research protocol.


