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ABSTRACT

This work explores authoritative DNS (AuthDNS) as a new measure-
ment perspective for studying the large-scale epidemiology of the
malware ecosystem—when and where infections occur, and what
infrastructure spreads and controls malware. Utilizing an AuthDNS
dataset from a top registrar, we observe malware heterogeneity
(202 families), global infrastructure (399,830 IPs in 151 countries)
and infection (40,937 querying Autonomous Systems (ASes)) vis-
ibility, as well as breadth of temporal coverage (2017-2021). This
combination of factors enables an extensive analysis of the malware
ecosystem that reinforces prior work on malware infrastructure and
also contributes new perspectives on malware infection distribution
and lifecycle. We find that malware families re-use infrastructure,
especially in cloud hosting countries, but contrary to prior work,
we do not detect targeting of clients by countries or industry sector.
Furthermore, our 4-year lifecycle analysis of diverse malware fami-
lies shows that infection analysis is temporally sensitive: over 90%
of ASes first query a malicious domain after public detection, and a
median of 38.6% ASes only query after domain expiration or take-
down. To fit AuthDNS into the broader context of malware research,
we conclude with a comparison of experimental vantage points on
four qualitative aspects and discuss their advantages and limita-
tions. Ultimately, we establish AuthDNS as a unique measurement
perspective capable of measuring global malware infections.
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1 INTRODUCTION

Malware is a pervasive and growing problem [21, 22]. To counter
this rising tide, the security community has performed extensive
research into understanding malware and has devised techniques
for detection, mitigation, and prevention. Unfortunately, malware is
extremely diverse—it spans potentially unwanted programs (PUPs),
ransomware, and rootkits—making it difficult to generalize results
and defenses based on individual malware families.

Ecosystem-wide analysis of malware is necessary to understand
broad malware characteristics and to enact appropriate high-level
protections and policies. For example, Lever et al. [18] noted heavy
malicious usage of popular cloud hosting services which introduced
the need for stricter vetting and policing by providers. As another
example, Kotzias et al. [15] found that different industries have
highly variable infection rates (76% versus 16% for Electrical Equip-
ment compare to Banking), which either suggests targeted attacks
by malware operators or indicates that security policies for some
industries are more effective than others. Macro-level analysis of
malware at large can lead to solutions with far-reaching impact.

Although prior work has explored many aspects of the malware
ecosystem, existing research perspectives only have partial visibility
into when and where malware infections occur. With the exception
of peer-to-peer networks, malware sandboxes cannot observe in-
fected hosts in the wild. The visibility of passive recursive DNS [18]
is limited to a handful of collaborating networks. Host-based mea-
surement [15] is often biased or dependent on pre-installed software
and challenging to scale globally. Sinkholes [3, 38] miss infection
phases prior to infrastructure takedown. Studies focused on individ-
ual malware families (e.g., Mirai [5], ransomware [14]) may have
nearly complete visibility, but the lack of malware heterogeneity
precludes broader malware ecosystem insight.

This work explores passively collected authoritative DNS (Au-
thDNS) server logs as a new vantage point for characterizing the
broader malware ecosystem. The ubiquity of DNS for network com-
munications and its hierarchical nature create an opportunity to
examine malware across four dimensions: malware family diversity,
full lifecycle time span, and global visibility into both malware in-
fections and infrastructure. Leveraging data from one of the twenty
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largest top-level DNS authority zones!, we study the extent to

which AuthDNS can replicate previous research findings and also
further expand our understanding of the malware ecosystem.

We perform three case studies from the AuthDNS perspective.
First, looking at malware infrastructure, we find substantial overlap
in the networks utilized by different malware families. In the most
extreme case, we observe an AS hosting 715 domains associated
with 94 distinct malware families. This observation supports prior
work [18, 23, 42], which show malware hosting is often interlaced
with legitimate infrastructure. We perform a detailed comparison
to understand the nuances of each measurement perspective.

Second, we examine the breadth of global malware infections.
Previous works studying a wide set of malware have detailed visibil-
ity into a specific subset of affected clients (e.g., enterprise networks
protected by a specific AV vendor [15]). The AuthDNS vantage point
provides a slice of global visibility. After looking at all querying
clients, we find that targeted malware infections are not apparent
for most malware families. Instead, we find that infection rates
per country or sector correlate (> 0.95 Spearman’s p) with overall
network activity. The vast majority of clients fall under the Infor-
mation & Communication or Wholesale & Retail Trade (due to how
Amazon’s space is classified) industry sectors.

Third, we examine an under measured aspect of the malware
ecosystem: the full lifecycle of malware communications, from do-
main registration to blocklisting, and ultimately, expiration. We find
that most malicious domains are set up and detected quickly, within
five days for 50% of new registrations. Furthermore, we observe
a multitude of scanners that emerge after a domain’s detection,
as well as a median 38.6% of new client networks first querying
malicious domains after their expiration. Two explanations for this
phenomenon are persistent infections on mobile clients that mi-
grate ASes, or scanners and security professionals querying expired
domains [38]. Estimating malware infections from a network per-
spective after a domain’s expiration should be done with caution.

This study comprises the central pillars for malware epidemi-
ology: the infrastructure that spreads and controls malware, and
the location and timing of client infections. To understand how
AuthDNS supplements existing research, we discuss the advantages
and limitations of each vantage point. We then categorize the gen-
eral types of ecosystem properties (e.g., malware variants, victim
targeting, etc.) and provide guidelines for which perspectives will
yield meaningful measurements. Ultimately, this work establishes
AuthDNS as a unique outlook on the malware ecosystem, replicates
prior results on malware infrastructure, expands our understanding
of malware epidemiology, and introduces a framework to contextu-
alize existing and future research.

2 BACKGROUND

Prior ecosystem-wide studies of malware have investigated a wide
swath of properties (e.g., infection mechanism, obfuscation tech-
niques, evasion of malware classifiers, network-based attacks, com-
mand and control) that all aim to detect, mitigate, or prevent mal-
ware infections. This work focuses on the epidemiological prop-
erties of malware, which broadly examines 1) when and where
malware infections occur and 2) what infrastructure spreads and

1Undisclosed due to data sharing agreements.

controls the malware. We defer the discussion of related works to
Section 7 as part of a broader comparison of vantage points and
the malware properties they are best suited to capture.

2.1 Authoritative DNS

The domain name system (DNS) [24] is one of the core components
of the Internet. DNS translates semantic domain names into IP
addresses, making it a useful data source for observing Internet
communication. While DNS data can be collected at many loca-
tions, this work focuses on passive collection at the authoritative
nameserver, enabling us to observe all requests for a given domain.
We refer the reader to [25, 26] for a broader overview of DNS.

Global visibility via AuthDNS has a few limitations. DNS requests
to the authoritative nameserver originate from DNS recursives
instead of the end-user, and lookup volumes are reduced due to
caching at recursive. RFC 7871 [11] introduced a DNS extension,
EDNS Client Subnet (ECS), to allow geographically optimized re-
sponses when a DNS client’s recursive is not located near the client.
ECS includes a portion (the first 24 bits, by default) of the client’s IP
address in DNS requests sent from the recursive to the authoritative
nameserver. This enables an authoritative nameserver to approx-
imate the geographic location of a client and reply appropriately.
As a result, ECS enables global DNS visibility at the authority with
client-level visibility for enabled resolutions.

Prior work utilizing passive authoritative DNS data has focused
on detection and measurement in the upper DNS hierarchy [6, 12,
31, 44, 47] and does not tackle the challenge of quantifying the
larger malware ecosystem.

3 DATASETS AND METHODOLOGY

This section details AuthDNS and supporting datasets, describes
our methodology, and discusses the limitations of our approach.

3.1 Datasets

Passive Authoritative DNS (AuthDNS). We collaborate with a
domain registrar that collects DNS data at the authoritative DNS
nameservers used by the top-level zones that it serves. Our DNS
data spans 2017-02-09 to 2021-06-30 and includes all DNS packets
sent or received by the authority. We extract the IP address of the
recursive resolver, the domain name resolved, the response from
the authority, and client IP subnet for ECS-enabled queries.
Malware DNS (MAL). We collect malware domains from a data
partner[43] that executes suspicious Windows binaries in an iso-
lated malware sandbox. The malware executions span from January
2018 to April 2021 and amount to 30,302,106 executions. We obtain
the communications in PCAP form and extract the DNS traffic.
VirusTotal (VT). We query VirusTotal [2] to collect malware fam-
ily classification labels for malware samples in our MAL dataset,
and we use AVClass 2 [40] to identify the most relevant label. While
VT offers results from a plethora of antivirus engines, we only use
AV detection results from 17 popular antivirus (AV) vendors that
we have found provide stable labels. Additionally, we utilize VT
to extract historical data for malware samples, malicious domains,
and the dates that they were first labeled as malicious.

IP Whois (IPWHOIS). We use the Prefix-to-AS dataset available
from CAIDA [9] to annotate the networks initiating DNS requests.



We joined this data with the ASN-to-AS organization delegations
provided by the Regional Internet Registries (RIRs). When dis-
cussing the IPWHOIS dataset, we are referring to the union of
these datasets. We utilize this dataset to map IPs to the organiza-
tions (and countries) that announce their prefixes.

Industries (IND). In order to link an IP address to its industry,
we use a commercial IP intelligence dataset. While the dataset is
imperfect—a portion of Amazon’s IP space is labeled as Wholesale
and Retail Trade, which is partially accurate since Amazon’s retail
business utilizes its own cloud infrastructure—it represents one of
the best labeling available. Open-source solutions such as ASdb [49]
provide AS-level granularity that is too coarse for our purposes. IND
includes organizational property information based on the “Interna-
tional Standard Industrial Classification of All Economic Activities”
(ISIC). The Statistics Division of the United Nations (UNSD) [1]
provides the mappings of ISIC codes and business categories. We
intersect the two datasets to attribute an IP address to a specific
business based on the UN standard. We refer to different industries
as sectors through the rest of the paper.

3.2 Methodology and Validation

Generating Malware Dataset. To obtain a set of malware-related
domains, we first find the overlap between our MAL and AuthDNS
datasets. Malware samples may query benign domains to check
for network connectivity. Similar to Lever et al. [18], we filter out
top-ranked domains in Trancolist [34]. This filtering yielded 12, 212
effective second-level domains (e2LDs), which capture the registra-
ble portion of a domain name. For example, in the fully qualified do-
main name www[. Jexample[.]co[.Juk the e2LD is example[.]co[. Juk,
while the second level domain name is cof. Juk.

The 12, 212 malicious e2LDs are associated with 174, 112 malware
samples from MAL. We submit them to VT for scanning and find
that 98.96% of the samples are known to VT, and 99.97% of known
samples are marked as malicious by five or more AV vendors. Finally,
we expand our dataset by querying VT for all malicious samples
communicating with the 12, 212 malicious domains. This reflection
yields an additional 70, 898 samples, for a total of 245, 010 samples.
Malware Sample Labeling. Different AV vendors offer divergent
labels for a malware sample [28]. We use AVClass2 [40] and a
malware encyclopedia [33] to resolve these aliases (e.g., bladabindi
to njrat) when possible. We keep the top malware family label by AV
vendor agreement and disregard generic labels or labels where the
AV vendors cannot agree (SINGLETON). Following this methodology,
we discard 81,750 samples (33.63%) assigned the label SINGLETON.
The 161,322 (66.37%) successfully labeled samples represent 202
distinct malware families. No malware families appear to have an
outsized representation in our datasets, and we summarize the top
15 malware families by the number of domains in Table 1.

Figure 1 shows the cumulative distribution of the number of
malware samples and hosting servers per domain in our dataset.
Most domains are associated with only handful of malware samples,
with 57% of the domains related to less than three samples. A similar
trend holds for the number of servers resolved by a given domain.
These distributions are consistent with those in prior large-scale
malware measurement studies [18].

Malware Server Client
Family Domains  Samples IPs CC | Count CC  Sectors
darkkomet 3,578 16,441 | 175K 140 | 2,187K 232 20
njrat 1,924 10,596 | 195K 129 | 1,970K 229 21
cybergate 1,181 2,546 38K 100 931K 219 19
xtrat 946 2,801 62K 89 | 1,108K 222 19
bifrose 700 1,432 11K 62 497K 211 18
razy 667 1,139 | 107K 110 | 1,508K 225 18
remcos 563 39,279 61K 103 | 1,028K 221 18
nanocore 501 2,112 72K 116 | 1,446K 227 19
ponystealer 450 4,891 49K 93 106K 222 17
gamarue 410 761 53K 97 | 1,523K 225 19
poison 355 1,018 18K 75 692K 212 18
vobfus 282 3,843 36K 89 936K 219 19
nymeria 279 966 39K 101 838K 215 18
zbot 229 24,736 9K 61 945K 220 20
netwire 228 634 34K 82 859K 223 18

Table 1: Top 15 malware families based on the number of
malicious domains in our dataset.
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Figure 1: Distribution of the number of malware samples
and servers associated with each domain in AuthDNS.

Malicious Domain Validation. To validate the maliciousness
of the 12,212 e2LDs, we query VT and find that 76.7% of the ma-
licious e2lds have at least one historical URL labeled as malicious.
87.5% of the filtered malware samples only queried domains in our
AuthDNS and no additional domains. This combination of factors
gives us high confidence in our malicious domain dataset.

Figure 2 shows the aggregate daily query volume of malicious
domains, as seen in AuthDNS. Our vantage point provides a stable
view throughout the four years of our study, except for three dips
related to collection issues. On average 17.9% of daily requests are
ECS-enabled, allowing us to learn the clients’ subnets in addition
to the IP address of the recursive. Similar to Kountouras et al. [16],
we define a client as the client subnet when ECS is enabled and
the recursive’s IP address when ECS is not enabled. We use this
client definition for our experiments in Sections 5 and 6. Finally, we
apply IPWHOIS and IND to servers and clients in order to identify
relevant ASNs, organizations, countries, and industry sectors.

3.3 Limitations

Our AuthDNS vantage point faces several limitations. We summa-
rize them below and discuss them in more depth in Section 7.

Recursive resolvers. The DNS protocol relies heavily on recur-
sive resolvers, which operate in-between authoritative DNS servers
and DNS clients. This indirection makes client estimation difficult.
Although many public DNS resolvers support ECS [16, 20], lack of
client support for ECS can lead to underestimation. Furthermore, if
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Figure 2: Daily Volume AuthDNS for malware domains. ECS-enabled requests (orange) average 17.9% of daily requests.

multiple infected hosts exist within the same ECS network block,
AuthDNS cannot distinguish between them. Finally, authoritative
DNS servers typically see only a portion of the DNS requests issued
by individual hosts [30] due to caching by recursives. We do not
utilize query volumes. Instead, we focus on the number of unique
clients we observe querying for each domain in AuthDNS over the
four years of our measurement. Due to the aforementioned limita-
tions, our results, even with global perspective, should be viewed
as lower bounds on the overall malware ecosystem.

Noisy clients. Not all DNS lookups for malware related domains
come from the malware itself. Honeypots and network scanners
may query DNS to detect malware-related infrastructure in several
cases. This is a common challenge in prior malware ecosystem
research that leads to overestimation [13, 38]. We do not address
this limitation in Sections 4 and 5, in order to perform meaningful
comparisons with established alternative perspectives. However,
we begin to address this challenge in Section 6 by examining the
different stages of the malware domain lifecycle and identify likely
scanners based on signals such as queries that consistently appear
after new malware domains are reported/discovered on blocklists.
VPNs and proxies. Clients may utilize VPNs or proxies to hide
their true network location. This can skew AuthDNS’s geolocation
of infected populations. To approximate the presence of proxies and
anonymizing networks in our dataset, we measure the prevalence
of Tor exit nodes in AuthDNS using historical Tor exit node lists[35],
accounting for the days that each exit node is active. We find the
average daily client percentage and average daily query volume
percentage of Tor exit node IPs to be 0.07% and 0.001% respectively:
thus, their presence on our dataset is minimal. The low prevalence
of anonymizing networks on our dataset does not guarantee the
absence of other popular proxy and VPN providers. A lack of well
documented historical datasets for proxies/VPNs limits our ability
to measure them more thoroughly.

Malware Visibility. The observations in our study are limited
by the visibility of our datasets. More specifically, our visibility
of malicious domains depends on the MAL dataset, which only
includes Windows malware. Additionally, we intersect the mali-
cious domains with those registered in our AuthDNS dataset, which
removes an additional set of malicious domains. Despite these limi-
tations, our study covers more than 200 malware families.

4 HOSTING INFRASTRUCTURE

The hosting infrastructure used by cybercriminals is an essential
aspect of malware communication. Understanding how malicious
actors distribute and coordinate malware enables the security com-
munity to take more effective remediation steps and can focus
resources on areas of frequent abuse. To study this infrastructure,
we consider a set of 6,400 domains representing the intersection of
domains with malware family labels and IPWHOIS labels for the
IP addresses resolved by those domains. In aggregate, this set of
domains point to 399,830 different IP addresses in 151 countries.

First, we consider where malware is hosted. Figure 3a shows
a map of all the countries we can associate with infrastructure
resolved by malicious domains, with lighter colors indicating fewer
malware families. Countries home to large hosting providers—like
the United States, France, and Germany—also host large numbers
of malware families. Tajalizadehkhoob [42] and Mezzour [23] both
found that the distribution of C2 infrastructure on legitimate host-
ing platforms was strongly correlated with the size of the host-
ing platform and weakly correlated with their security policies.
Our work reiterates that hosting infrastructure may enable mal-
ware communication to hide in plain sight. For example, Lever [18]
showed that PUP software is often long-lived on legitimate, com-
mercial hosting platforms and found a growing trend of malware
samples taking advantage of such hosting.

Zooming in, we examine how infrastructure is reused across
different malware families. Figure 4a shows the distribution in the
number of malware families hosted per country (corresponding
to Figure 3a), ASN, network (BGP Prefix), and IP address. We find
that only 102,728 (25.7%) of malware-hosting IP addresses were
associated with a single malware family. Conversely, 26,226 (6.6%)
of IP addresses resolved by malware domains could be tied to ten or
more families. In one case, we found that IPs belonging to AS29075
(IELO IELO-LIAZO SERVICES SAS) were pointed to by 715 do-
mains corresponding to 94 malware families. We believe this to be
the result of many malicious actors taking advantage of a proxy
operated within this French ISP, demonstrating widespread reuse.

Finally, malware families often spread their hosting across multi-
ple countries. We found only 24 malware families have their hosting
contained to a single country. To help explain the intra-family di-
versity of hosting, we looked at the correlation between the number
of domains in AuthDNS contacted by each malware family and the
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Figure 5: Correlation between different measures of hosting infrastructure. Higher numbers of samples per malware family
correlates with more domains. Higher domain utilization correlates with more server IPs and more hosting countries.

number of samples, hosting server IPs, and hosting server coun- of domains used by a given malware family and the number of
tries. Figure 5a shows a strong correlation between the number



unique samples in our dataset. Several outliers, such as zbot, for
which we observed very few domains but a large number of files,
reduced the Pearson correlation. However, the Spearman corre-
lation, which is more tolerant of outliers, still showed a strong
correlation. Figure 5b goes on to show a strong correlation between
the number of domains contacted by each malware family and the
number of hosting servers observed. Further, Figure 5¢ shows that
as the number of domains and hosting IPs increases, so does host
country diversity. As the malware family progresses, using more
domains or samples, it naturally expands. This breadth of hosting
infrastructure contributes significantly to the security community’s
challenge of attribution and takedowns.

Takeaway-1: The view of malware-related domain hosting pro-
vided by AuthDNS largely agrees with prior work which relies upon
network data collected at different points in the DNS hierarchy. In-
frastructure is reused across different malware families and is often
intertwined with legitimate hosting services. Within a malware fam-
ily, it is common to see many host networks and IPs deployed, often
crossing geopolitical boundaries. This agreement between datasets
suggests interchangeability; however, a key factor makes AuthDNS
data superior when available. Non-global vantage points such as Re-
cursiveDNS will only yield snapshots of the hosting infrastructure
once customers using that recursive begin querying for a given do-
main. This may limit visibility during the early stages of a domain’s
life, particularly before widespread infection by the corresponding
malware occurs. AuthDNS does not suffer from this limitation.

5 MALWARE CLIENTS

AuthDNS provides a unique perspective on potential victims who
query for malicious domains. In Section 4, many of our findings
concerning malicious domain hosting agreed with prior work and
could be drawn from other vantage points. The same interchange-
ability is not valid for studying those infected by malware families.
The limitations of previous techniques become apparent when we
observe victims through the global perspective of AuthDNS.

As discussed in Section 3.2, authoritative nameservers receive
DNS requests from recursives rather than individual hosts. This
makes the tradeoff of gaining visibility into all querying recursives
but gives up visibility into individual endpoints, which recursive
DNS provides for a subset of the population. Thus, for non-ECS
queries, we consider the IP address of the recursive to be the client,
while for ECS-enabled requests, we use the ECS netmask.

Our aim with AuthDNS is to study large infected populations
as epidemiologists rather than infected individuals as doctors. Fig-
ure 3b shows the number of malware families affecting each country,
with darker colors representing more malware families. A signif-
icant portion of malware families plagues nearly every country.
These globally expansive infections contrast with Figure 3a which
showed higher concentration levels of malware family hosting in
particular countries. Figure 4b zooms in to indicate the number of
malware families that are contacted by each network or client.

Viewed from the opposite direction, Figure 6a shows the number
of countries each malware family affected with respect to the total
number of clients observed. We found that only one family, fosniw,
had queries to related domains originating from fewer than ten
countries, while 144 (71.3%) of malware families were found to be

queried from 100 or more countries. This agrees with Mezzour et
al. [23], which also witnessed near-universal affliction by malware
in developed countries. Additionally, they found that infection rates
correlated strongly with the IT resources of that country. As with
the location of hosting infrastructure for malware-related domains,
the spread of malware across geopolitical boundaries complicates
the security communities’ task of identifying the targeting of vic-
tims for most malware families. We see that malware families do
not generally tend to target specific networks, but rather, many
networks appear to be infected by multiple different malware fam-
ilies. Furthermore, malware family infections are not commonly
confined by geography as seen from the perspective of AuthDNS.

5.1 Industry Sectors

ISIC Section Clients Malv.lz?re ‘
Families
Information & Communication 3,108,546 202
Wholesale & Retail Trade 567,729 202
Education 29,741 201
Professional, Scientific & Technical Activities 11,576 196
Manufacturing 4,837 192
Government, Defence 4,697 178
Financial & Insurance Activities 3,670 183
Human Health & Social Work Activities 3,785 172
Accommodation & Food Service Activities 2,785 148
Transportation and Storage 624 155
Arts, Entertainment & Recreation 421 140
Electricity, Gas, Steam & A/C Supply 333 127
Administrative and Support Service Activities 199 141
Extraterritorial Organizations and Bodies 164 120
Other Service Activities 149 149
Real Estate Activities 96 86
Construction 74 38
Mining and Quarrying 17 23
Agriculture, Forestry and Fishing 5 18
Water Supply, Sewerage. 5 8

Table 2: Unique clients querying malicious domains and
number of malware families in each industry (ISIC section).

ISIC Section ‘ 2017 2018 2019 2020 ‘
Al Mal | Al Mal | Al Mal | All Mal
Information & Communication 0.85M 68K | 1.4M 121K | 1.3M 136K | 1.3M 117K
Wholesale & Retail Trade 52K 10K | 14K 34K | 16K 68K | 29K 10K
Education 19K 15K | 27K 2K | 25K 26K | 29K 19K
Professional, Scientific & Technical 46K 402 | 88K 11K | 65K 1.1K | 77K 11K
Manufacturing 2,109 181 | 3.2K 387 | 29K 383 | 2.7K 246
Government, Defence 31K 215 | 52K 347 | 43K 384 | 45K 310
Human Health & Social Work 21K 129 | 35K 213 | 33K 228 | 35K 163
Financial & Insurance 27K 157 | 41K 267 | 3.6K 271 | 37K 214
Accommodation & Food Service 1.5K 69| 26K 103 | 2.2k 131 | 2.3K 75
Transportation & storage 250 34 | 379 58 | 317 59 | 309 25
Arts, Entertainment & Recreation 342 17 554 32 510 29 493 16
Electricity, Gas, Steam & A/C Supply 224 19 | 316 37 | 269 39 | 299 26
8 remaining sections 494 29 771 52 757 56 773 52

| Correlation (Spearman): | 098 099 098 099] 098 0.99] 098 0.8 |

Table 3: Client distribution across sectors for seven day sam-
ples starting 2017-03-01, 2018-03-01, 2019-03-01, and 2020-
03-01. All represents the complete AuthDNS dataset while
Mal represents only malicious domains.

Another way of grouping clients is by the type of network they
query from. Kotzias et al. found evidence that different industries
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Figure 6: Spearman correlation between different measures of potential victims. Higher numbers of clients querying for mal-
ware family related domains correlate strongly with a more diverse set of impacted countries and economic sectors.

are affected by different amounts of malware samples [15]. In that
study, the authors relied on file reputation logs collected from end-
point protection software to study malware affecting customers of
a large cybersecurity company. They found that specific industries
were affected by a disproportionate number of malware, suggesting
targeting by malware families and disparity in security posture
across industries. However, their vantage point was limited to cus-
tomers of the cybersecurity company, which they acknowledge
introduces bias. We seek to augment this work by studying how
malware families infect industries from a global vantage point.

For this analysis, we use the industries (IND) discussed in Sec-
tion 3.1. This mapping enables us to group clients by ISIC code.
ISIC provides a hierarchical classification of industries that break
down into 21 sections, 88 divisions, 238 groups, and 419 classes.
We use the ISIC section synonymously with industry sector in the
remainder of this work.

We observed around 39.7B requests for malicious domains in our
dataset, and were able to assign an industry label for approximately
28.08B (70.7%) requests. We only consider requests from clients to
whom we can assign an industry label.

Table 2 shows the number of clients we observed in each sector
as well as the number of offending malware families. For clarity,
we rename some of the ISIC code classification labels. We can im-
mediately see that each industry contains clients querying domains
associated with numerous different malware families. In fact, 15
of the ISIC sections appear to be impacted by over half of the
malware families in our dataset. We note that the Information
& Communication ISIC section, as well as Wholesale & Retail
Trade section, contains requests from all the malware families and
represent more clients than any of the remaining industries by sev-
eral orders of magnitude. From the more granular ISIC divisions, we
see that most queries from the Information & Communications
industry can be attributed to wired and wireless communications
due to the classification Internet Service Providers (ISP)
and the Residential & Business Hosting Infrastructure. A
portion of the IP address space controlled by Amazon is labeled as
Wholesale & Retail Trade, contributing to an overestimation of

the effects on this population. This also explains why these two sec-
tions contain several orders of magnitude more requests compared
to other sections.

To capture the representation of clients querying for malicious
domains compared to all clients in AuthDNS, we sampled a seven-
day window for each year in our study. Table 3 shows the number
of clients from top ISIC sections querying for any (malicious or
benign) domain during this window and the subset querying for
malicious domains. The final row shows the correlation (Spearman)
between the sampled datasets and the dataset of malicious domains
that spans the complete four-year study.

The next largest ISIC section by number of unique clients is
Education with roughly half of the requests in this section coming
from institutes of higher education such as colleges and universities.
These institutional networks typically have a wide variety of users,
including students, staff, faculty, and visitors. Many such networks
may not have direct control over the devices on their network. A het-
erogeneous base of infected devices and research related activities
provide a sensible explanation for why Education, and higher edu-
cation in particular, accounts for so many malware related queries.
While some of the remaining ISIC sections seem like prime candi-
dates for targeted behavior, we note that even sections associated
with the government, defense, finance, and infrastructure appear
to be impacted by many different malware families.

We find that malware families generally impact multiple ISIC
sections, with 72.7% of the malware families found in more than 10
sectors. Our aggregate analysis with global visibilty cannot draw
the same conclusions as Kotzias et al. [15], which found that 1,911
(37%) of the malware families in their study were only seen in one
enterprise. Instead, Figures 6b and 6c respectively show that the
number of industries a malware family impacts is correlated with
the overall number of clients impacted by that malware and the
geographic diversity of those clients. As malware families grow, so
do the diversity of their victims.

Takeaway-2: In aggregate, we do not see malware families solely
affecting individual industries. 72.7% of the malware families in our
data are found to affect more than 10 distinct industry sections. While



datasets derived from RecursiveDNS or host-based security products
offer a view into the networking behavior of individual end-users,
they can introduce biases by considering customers in a particular
geographic region or those already taking steps to mitigate their online
risk. Our study of clients affected by a range of malware families high-
lights how AuthDNS’s global vantage point can reduce these biases
and lead us to draw divergent conclusions when studying malware
infections from an epidemiological standpoint. Still, AuthDNS leaves
ample room for studies such as Kotzias et al. [15] that provide greater
visibility into individual infected hosts for a subset of the population
once these potential biases are placed in the context of a global view.
While AuthDNS does not provide visibility into end-users, it does offer
a complete view of recursives querying domains under that authority.
ECS-enabled requests further narrow this gap when looking at affected
clients through the lens of AuthDNS.

6 MALWARE LIFECYCLE

Utilizing the unique vantage point of AuthDNS, we perform a tem-
poral analysis in order to understand the lifecycle of malicious
domains. We complement the client visibility of previous studies
that observed malicious domains after expiration [38] by consider-
ing all clients querying for a malicious domain name during three
phases: registration to detection, detection to expiration, and post
expiration. We determine the date of detection as the earliest of
the following dates: a malicious URL of the domain is detected by
more than one vendor in VT, a malicious hash communicating with
that domain is detected in VT, a malicious hash communicating
with that domain is seen in our malware DNS dataset. In order to
fully observe the domain lifecycle, we only consider domains that
were registered after the first day of visibility we have in AuthDNS.
Further, we restrict our analysis to domains that have been regis-
tered only once in our AuthDNS dataset so that we do not observe
noise from previous or subsequent registrations as domain names
get repurposed. This filtering leaves us with 2,308 domain names,
18.9% of the total domains in our dataset.

Table 4 summarizes the networks for the lowest 10%, lower quar-
tile, median, upper quartile, 90% and max of querying clients during
all phases of the domain lifecycle. The registration to detection win-
dow is relatively short, lasting 19 days or less for 75% of domains.
Additionally, at the median, only six networks (ASNs) and three
countries queried for domains while they were in this initial phase.
By comparison, the second temporal window, detection to domain
expiration/takedown is significantly longer, with at least 23 days
representing the lower quartile. At the median, 54% of ASNs that
will ultimately query for a domain do so for the first time during
this window. The same observation holds for the countries and
industry sectors of these clients. Finally, queries continue during
the post-expiration/takedown period, which continues until the
end of our four-year AuthDNS dataset for domains that are not
re-registered. Interestingly, in this period, the median domain ob-
serves more than 76 unique ASNs and ten countries querying it for
the first time. This represents a long tail of unique clients first seen
only after a domain has expired or been taken down.

In order to understand the most popular networks in each lifecy-
cle phase, we look at the top querying ASNs across domains. Table 5

shows the top five unique ASNs as seen by the number of first oc-
currences in each temporal window. During the registration to de-
tection window, we first observe large hosting networks (Amazon),
large recursives (Google), and large telecommunication companies
(Vimpelcom and Level3). This window is related to the setup and
testing of the domains by the actors and the first potential victim
connections, resulting in queries from large recursives and telcos.
After the domain’s detection, the most common ASNs to be first
observed are large scanners (GEORGIA-TECH [17]), AV companies
(MFENET - McAfee and PAN0001 - PALO ALTO NETWORKS), and
other large hosting networks (WINTEK-CORP and OVH), which
can contain other scanners. In this window, AVs, sandboxes, and
scanners query malicious domains and map their IP address space.
Lastly, in the final window, post-expiration/takedown, we observe
large Chinese telcos and business networks from other countries.
These post-expiration queries could be due to network mobility of
infected clients, new infections, or scanning.

Takeaway-3: The view provided by AuthDNS shows that re-
searchers need to consider a domain’s lifecycle to measure infected
populations accurately. Most domains in our dataset were detected
as malicious soon after registration, with the median time being four
days. After detection, domains will receive increased interest from
scanners and AV vendors, which can artificially inflate infected popu-
lation counts if proper filtering is not applied. Notably, there commonly
exists a long tail of new client queries after a domains’ expiration
or takedown. Existing infections on mobile clients generate queries
from new networks and may persist into this final phase. However,
prior studies further suggest that scanning activity late in the lifecy-
cle of a domain may constitute a significant portion of queries [38].
Researchers and practitioners using network data, AuthDNS or other-
wise, to estimate client infections risk obscuring malware behavior
when they do not distinguish between phases of the domain lifecycle.
As a community, there is room for further improvement in identi-
fying scanners and distinguishing the lifecycle phases for domains
with multiple registrations. Addressing these challenges will allow
researchers to better understand and help infected populations.

7 VANTAGE POINT COMPARISON

Thus far, we have shown AuthDNS’s ability to 1) reproduce previous
observations of malware infrastructure (Section 4), 2) add a novel
perspective on the distribution of malware infections (Section 5),
and 3) introduce a full temporal view of the malware domain life-
cycle (Section 6). In this section, we synthesize these findings and
contextualize them in the broader landscape of malware ecosys-
tem and epidemiology research. We first enumerate related work
and map the relationships between different perspectives. We then
compare the perspectives along four different qualitative character-
istics and highlight the appropriate role of each perspective, gaps
in existing malware visibility, and avenues for future research.

7.1 Measurement Planes

Broadly speaking, malware utilizes three distinct network planes?
(Figure 7), which we define as a grouping of network components
based on their location and functionality within the network.

*Unrelated to control/data planes from software defined networking.



‘ Domains Registration to Detection Detection to Expiration/Takedown Post Expiration/Takedown

ASNs (%) ASCCs (%) Sectors (%) Days | ASNs (%) ASCCs (%) Sectors (%) Days | ASNs (%) ASCCs (%) Sectors (%) Days
10% 0 (0.00) 0 (0.00) (0.00) 0 19 (11.6) 5 (11.5) 0 (00.0) 1 10 (6.80) 1 (1.02) 0 (0.00) 238
25% 0 (0.00) 0 (0.00) 0 (0.00) 1 59 (36.2) 15 (42.9) 2 (375 23 36 (21.9) 3 (9.09) 0 (0.00) 526
50% 6 (2.63) 3 (7.69) 1 (20.0) 4 101 (54.0) 26 (62.5) 4 (62.5) 30 76 (38.6) 10 (22.7) 1 (167) 963
75% 22 (10.0) 9 (21.8) 2 (375) 19 164 (70.4) 37 (79.0) 5 (80.0) 100 | 132 (553) 18 (40.0) 2 (30.0) 1,180
90% 54 (23.4) 18 (40.0) 3 (57.1) 79 369 (86.5) 54 (90.4) 7 (100) 419 | 229 (71.3) 28 (58.6) 3 (50.0) 1,256
max 2,243 (96.6) 136 (100) 14 (100) 1,154 | 11,650  (100) 187 (100) 15 (100) 1,661 | 4,644 (100) 95 (100) 10 (100) 1,558

Table 4: Request characterization for three temporal windows. While most clients and sectors are observed between malicious
domain detection and expiration/takedown, many client ASNs and countries (ASCCs) first connect after expiration/take down.

Registration to Detection

Detection to Expiration/Takedown

Post Expiration/Takedown

ASNAME Domains ASNAME Domains ASNAME Domains
AMAZON-AES 772 | WINTEK-CORP 1,745 | CNNIC-ALIBABA-US-NET-AP Alibaba (US) Technology Co., Ltd. 1,387
CORBINA-AS PJSC "Vimpelcom" 756 | GEORGIA-TECH 1,738 | CNIX-AP China Networks Inter-Exchange 1,363
GOOGLE 645 | OVH OVH SAS 1,662 | CHINATELECOM-TIANJIN Tianjij, 300000 1,226
LEVEL3 611 | MFENET 1,649 | InterConnect ML Consultancy 1,114
AMAZON-02 602 | PAN0001 1,641 | FSOL-AS F-Solutions Oy 1,084

Table 5: Most popular ASNs first observed in each temporal window. Scanners and AV vendors appear mostly during and after
detection of a malicious domain while hosting networks are most prevalent during the setup of the domain.
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Figure 7: Malware measurement can occur 1) in the global
DNS plane, 2) at or near the local client, or 3) at the malware
infrastructure. Each location has specific sub-components
that interact via request (filled arrow) and response (empty
arrow) protocols (e.g., DNS, C2 protocols). Existing research
has studied many of the depicted components with host-
based (yellow) or network-based (blue) techniques.

Global DNS  DNS is the bootstrapping protocol used by most
network communication to map domain names to IP locations;
malware uses DNS extensively, as evidenced by countless domain
blocklists and DGA malware. Global DNS refers to upper-hierarchy
authoritative DNS servers (e.g., root, TLD, 2LD) and large public re-
cursives (e.g., Google, CloudFlare), which share a global perspective
on domain lookups. Global DNS servers can receive DNS requests

from a universal set of clients and have worldwide visibility into
domain usage. Prior work [6, 12, 44] utilizing global DNS authori-
ties within the realm of malware has focused on detection, spam
measurements, and one work [37] performed a case study on stalk-
erware based on probing of large public recursives.

Local Client The local client plane consists of malware-infected
clients and the local networks in which they reside. In contrast
to global DNS, which only has network-based techniques, the lo-
cal client plane contains both host-based and network-based ap-
proaches. Host-based approaches include any measurements that
directly observe partial or full execution of malware: interactive
honeypots, malware sandboxes, and in-the-wild infections. Existing
malware research has skewed heavily towards host-based analy-
sis of the client plane. As a brief example amongst a profusion
of works, sandboxes and honeypots have been used to study gen-
eral Windows malware [8, 29], malware downloaders [39], Android
applications [19], malware protocol reverse engineering [32, 48], ex-
ploit sites [36, 45], C2 hosting [7, 27, 42], and DDoS [10]. Two works
have utilized host-based local client techniques to shed light on the
broader malware ecosystem. Kotzias et al. [15] applied host-based
infection measurement across 28K enterprises in 67 industries to
determine enterprise malware trends. Messour et al. [23] conducted
an empirical analysis of Symantec’s telemetry data to observe the
distribution of different malware types across countries.

The primary network-based approach within the local client
plane is the collection of DNS data from local recursives that han-
dle a network’s DNS traffic and are often set by default via Dynamic
Host Configuration Protocol (DHCP). Alrawi et al. [4] used recur-
sive passive DNS data to estimate infections by IoT malware, while
Lever et al. [18] focused on more general malware, including PUPs.

Malware Infrastructure Malware relies on infrastructure most
commonly for command and control (C2), but can also use separate
infrastructure for hosting, data exfiltration, or other functions. Mea-
surement of malware infrastructure IP addresses can occur from



global DNS and local client planes, but to collect communication
data between infections and malware infrastructure, researchers
have developed sinkholes. Sinkholes allow a researcher to oper-
ate or imitate malware infrastructure and collect richer data about
connecting clients. Several works have utilized sinkholes to study
specific phenomenon (e.g., remote-access trojans (RAT) [38], bot-
nets [41]); one prior work by Alowaisheq et al. [3] studied sinkhole
domain behavior across all types of malware, but did not operate
any sinkholes, since they require malware-specific configuration.

7.2 Comparison

Infection Visibility Infection visibility is the capability of a
vantage point to assess all infections of a threat globally and tempo-
rally. This work shows AuthDNS datasets yield high global infection
visibility as they provide access to all DNS requests made to a mali-
cious domain, across all locations and time. Datasets that are not
based on network infrastructure are limited in infection visibility as
they can only observe a subset of clients based on data source (e.g.,
AV vendors, ISP clients, recursive clients, email clients). Domain
sinkholes provide global location visibility, but partial temporal vis-
ibility, as they are limited to the post-expiration period of a domain.
Infrastructure takeover can provide global and temporal infection
visibility guarantees; however, this is difficult to execute and scale.

Infection Precision Infection precision is the capability of the
dataset to accurately estimate the validity and type of infections.
Passive DNS datasets contain noisy infection data that is muddled
with traffic from scanners, malware sandboxes, or security profes-
sionals. Thus, users of passive DNS datasets should filter clients
based on their behavior and network origin when estimating infec-
tions. Additionally, many different malware samples and families
can be hosted on the same domain name and the type of infec-
tion per client cannot be guaranteed. Client-side antivirus datasets
provide higher infection precision for the type of client and the exis-
tence of a specific malware sample; infrastructure takeover datasets
can provide the highest precision by looking at the collected in-
fected system data. Lastly, domain sinkholing initially provides
partial visibility, since a domain will continue to receive queries
after its detection period, but sinkholing data can be enhanced for
a better infection estimation as shown by Rezaeirand et al. [38].
Email datasets provide the lowest precision as they observe the
targeting aspect of an attack rather than the infection.

Client Granularity Client granularity is the capability of the
dataset to trace the infections down to single clients or users. Au-
thoritative pDNS datasets are limited in this regard since clients are
obscured by recursive DNS servers and caching. However, as shown
in this study, researchers can use the ECS field of an ECS-enabled re-
quest to obtain higher precision client granularity. Recursive pDNS
datasets yield even higher client granularity as they can observe
all the clients under the recursive making requests for a malicious
domain. Client-side AV datasets, infrastructure takedown datasets,
ISP network logs, and email datasets provide high guarantees of
client granularity as they can observe a unique client or user.

Malicious Infrastructure Visibility = Malicious infrastructure
visibility is the capability of the dataset to observe what infras-
tructure the malware actors have used to perform their campaign.

AuthDNS is, by definition, the authoritative source of the mapping
of domains to IPs for a malicious domain. DNS rewriting, for the
profit of the recursive operator [46], or for the protection of cus-
tomers, may limit the hosting infrastructure visibility provided
by a RecursiveDNS dataset. Infrastructure takedowns provide the
highest guarantees as they provide direct access to infrastructure;
however, it is not scalable. Infrastructure visibility via recursive DNS
and ISP network logs depends on the volume and consistency of
communications by infected clients within the measured networks.
The remaining datasets cannot provide any insights regarding the
infrastructure used by the malicious actors.

Takeaway-4: AuthDNS has several advantages and disadvan-
tages when compared to vantage points used in previously published
research. We find global, temporal and infrastructure visibility to be
the biggest advantages of our dataset. Thus, we position our measure-
ments along these advantages and we study each aspect in depth in
Sections 4, 5 and 6 and report our most insightful results. AuthDNS
has limited client granularity and limited infection precision. Future
work can be aimed to address this issue.

8 CONCLUSION

Understanding malware lifecycles is vital in the fight against In-
ternet threats. This work presents a longitudinal study analyzing
the network communication of 202 different malware families from
the perspective of a popular authoritative DNS server. We observed
billions of resolutions over four years at our authoritative collec-
tion point, enabling temporally complete and global visibility into
malicious domain usage. AuthDNS simultaneously solidifies prior
findings while also shedding new light on the epidemiology of
malware. First, different malware families often re-use the same
network infrastructure, so threat intelligence needs to label mali-
cious infrastructure cautiously. Second, malware families, when
analyzed in aggregate from an AuthDNS vantage point, do not ap-
pear to target specific networks or industries. Instead, they spread
to many different industries with high regularity over time. Third,
our temporal analysis shows that newly registered malicious do-
mains are set up and detected quickly. Due to network noise from
scanners and AV vendors, both the temporal and organizational
properties of network clients should be considered when estimat-
ing malware infections from a network perspective. Finally, we
introduce a brief taxonomy of malware measurement perspectives
and discuss the advantages and disadvantages across four primary
measurement goals. By broadening our understanding of global
malware infections, this work serves as a stepping stone to making
malware characterization more accurate and, ultimately, to make
mitigation more effective.
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